: 103203 Exam. Code Subject Code: 1321

B.A./B.Sc. 3rd Semester

PHYSICS

Paper-A

(Statistical Physics & Thermodynamics)

Time Allowed—3 Hours [Maximum Marks—35

Note: - Attempt FIVE questions in all, selecting at least ONE question from each section. Fifth question may be attempted form any section. Log tables can be asked for if necessary.

SECTION-A

- Taking the case of n particles distributed in 2 compartments with equal a priori probability, discuss the variation of probability of a macrostate on account of small deviation from the state of maximum probability.
- Four distinguishable particles are to be distributed among two compartments. The first compartment is divided into 3 cells and second into 2 cells. All the cells are of equal a priori probability and there is no restrictions on number of particles that can go into any cell. Calculate the values of W(4,0), W(3,1), W(2,2), W(1,3), W(0,4).

SECTION-B

Treating ideal gas as a system governed by classical 3. statistics; derive the Maxwell-Boltzmann law of distribution of molecular speeds.

142(2119)/HH-7699

(Contd.)

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

4.	Show that We	ein's displac	cement law ar	nd Stefan's	aw of
	radiation can	be obtained	from Planck's	s law of rad	ation.
					7

SECTION—C

- 5. Discuss the thermodynamics of a thermocouple. Derive an expression for (dE/dT) and (d²E/dT²) for a thermocouple, where E and T have their usual meanings.
- 6. (a) What is disorder? Why does a natural system always tend to change in the direction of increasing disorder?
 - (b) Derive an expression for the work done during:
 - (i) isothermal expansion
 - (ii) adiabatic expansion.

SECTION-D

- 7. (a) Derive an expression for $(C_p C_v)$ for van der Waals' gas.
 - (b) Why does a rubber string heat up on stretching?
- 8. Starting from four thermodynamical potentials, derive Maxwell's thermodynamic relations.